Further maths 2 Bi-Week 1 HW Dr. Zhongmin Jin

Due: TBD

Exercises for chapter 19: Hyperbolic functions

- 1. The curves $C_1: y = \cosh x$ and $C_2: y = \sinh 2x$ intercept the point where x = a.
 - (a) Find the exact value of a, giving your answer in logarithmic form.
 - (b) Sketch C_1 and C_2 on the same diagram.
 - (c) Find the exact value of the length of the arc of C_1 from 0 to x = a. (the arc length formula is given as $\int_a^b \sqrt{1 + (y')^2} dx$)
- 2. (a) Starting from the definitions of tanh and sech in terms of exponential, prove that

$$1 - \tanh^2 \theta = \operatorname{sech}^2 \theta \tag{1}$$

(b) The variables x and y are such that $\tanh y = \cos(x + \frac{1}{4}\pi)$. By differentiating the equation with respect to x, show that

$$\frac{dy}{dx} = -\csc\left(x + \frac{1}{4}\pi\right) \tag{2}$$

- 3. (a) Sketch the graph of $y = \coth x$ for x > 0 and state the equation of the asymptotic.
 - (b) Starting from the definition of coth and csch in terms of exponential, prove that

$$\coth^2 x - \operatorname{csch}^2 x = 1. \tag{3}$$

The curve C has equation $y = \ln(\coth \frac{x}{2})$ for x > 0.

- (c) Show that $\frac{dy}{dx} = -\operatorname{csch} x$.
- (d) It is given that the arc length of C from x = a to x = a to x = 2a is $\ln 4$, where a is a positive constant.

Show that $\cosh a = 2$ and find, in logarithmic form, the exact value of a.

- 4. Solve $17 \sinh x + 16 \cosh x = 8$.
- 5. Prove the identity $\sinh 3x = 3 \sinh x + 4 \sinh^3 x$.
- 6. Solve $\tanh^2 x + 5 \operatorname{sech} x 5 = 0$ in logarithms.